
Issue

53
2023

Beyond Direct Memory
Access: Reducing the Data
Center Tax with Intel® Data
Streaming Accelerator
Cultivating Parallel Standards: Diversity, Alignment,
and Cross-Pollination

Sign up for future issues
© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

2The Parallel UniverseContents
F

E
A

T
U

R
E

Letter from the Editor

Beyond Direct Memory Access: Reducing the Data Center Tax with
Intel® Data Streaming Accelerator
Take Advantage of On-Chip Acceleration of Data Transformation in 4th Gen Intel®
Xeon® Scalable Processors

Cultivating Parallel Standards: Diversity, Alignment, and Cross-
Pollination
A Look into the Future of Standards-Based Parallel Programming

The Moat Is Trust, Or Maybe Just Responsible AI
Minimizing the Risks of Generative AI

Create Your Own Custom Chatbot
Train Large Language Models Quickly and Easily on Intel® Processors

Fine-Tuning the Falcon 7-Billion Parameter Model with Hugging Face
and oneAPI
Optimizing Large Language Models on Intel® Xeon® Processors with Intel®
Advanced Matrix Extensions (Intel® AMX)

Using Fortran DO CONCURRENT for Accelerator Offload
Limitations of Standard Fortran for Heterogeneous Computing

Performance Optimization on Intel® Processors with High Bandwidth
Memory
A Deep Dive into Performance Tuning for the Intel® Xeon® CPU Max Series

3

6

15

19

22

28

37

42

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

3The Parallel Universe

Openness, Sustainability, and the Cambrian Explosion of
Generative AI Models
Since our last issue, two news items have caused a stir in the AI community. The first was a fireside chat
between Intel and Hugging Face luminaries about Taking on the Compute and Sustainability Challenges
of Generative AI, which among other things discusses how the democratization of generative AI has
led to an explosion of pretrained models on The Model Hub. The second is the leaked internal Google
memo, We Have No Moat, And Neither Does OpenAI, which laments how smaller, faster, cheaper, and
more customizable open-source AI will outcompete closed models.

We have three articles along these lines in this issue. The first is a guest editorial from Huma Abidi
(General Manager and Senior Director of AI Software Products) and Haihao Shen (AI Software Architect)
that directly addresses the figurative “moat” around AI: The Moat Is Trust, Or Maybe Just Responsible
AI. The second, Create Your Own Custom Chatbot, demonstrates how to use open models and readily
available hardware to build customized, high-performing chatbots. Finally, Fine-Tuning the Falcon
7-Billion Parameter Model with Hugging Face and oneAPI shows how to optimize another open-
source large language model on Intel® Xeon® processors with Intel® Advanced Matrix Extensions (Intel®
AMX).

Our feature article, Beyond Direct Memory Access: Reducing the Data Center Tax with Intel® Data
Streaming Accelerator, provides code examples and advice to take advantage of on-chip acceleration
for data transformation. The Intel Data Streaming Accelerator is new in 4th Gen Intel Xeon Scalable
processors.

The Case for SYCL* (The Parallel Universe, Issue 51) discussed the limitations of ISO C++ with respect to
heterogeneous computing. In the second guest editorial of this issue, Cultivating Parallel Standards,
John Pennycook (Software Enabling and Optimization Architect) describes the process of aligning SYCL
with future C++ language concepts.

3The Parallel Universe

Letter from the Editor
Henry A. Gabb, Senior Principal Engineer at Intel Corporation, is a longtime high-performance and
parallel computing practitioner who has published numerous articles on parallel programming. He
was editor/coauthor of “Developing Multithreaded Applications: A Platform Consistent Approach”
and program manager of the Intel/Microsoft Universal Parallel Computing Research Centers.

https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/newsroom/news/taking-the-compute-challenges-of-generative-ai.html
https://www.intel.com/content/www/us/en/newsroom/news/taking-the-compute-challenges-of-generative-ai.html
https://huggingface.co/docs/hub/models-the-hub
https://www.semianalysis.com/p/google-we-have-no-moat-and-neither
https://www.intel.com/content/www/us/en/developer/articles/technical/the-case-for-c-plus-plus-with-sycl.html

Sign up for future issues
© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

4The Parallel Universe

During my first 15 years in computational science, if I needed to TRANslate a FORmula into code, I did
it almost exclusively in FORTRAN. So, I read the recent report from Los Alamos National Laboratory
with great interest: An Evaluation of Risks Associated with Relying on Fortran for Mission Critical Codes
for the Next 15 Years. Support for heterogeneous parallelism is one of the risk factors, so Ron Green
(Compiler Engineering Manager and fellow Fortran enthusiast) and I take a look at Using Fortran DO
CONCURRENT for Accelerator Offload. This article focuses on language features, but we’re working on
a follow-up article that will analyze DO CONCURRENT performance on CPUs and GPUs. Stay tuned.

Finally, we close this issue with a deep dive into performance tuning on the Intel Xeon CPU Max Series:
Performance Optimization on Intel® Processors with High Bandwidth Memory.

As always, don’t forget to check out Tech.Decoded for more information on Intel solutions for code
modernization, visual computing, data center and cloud computing, data science, systems and IoT
development, and heterogeneous parallel programming with oneAPI.

Henry A. Gabb

July 2023

PODCAST

How Generative AI is Changing How
We Develop, Work and Live

LISTEN NOW

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-23-23992
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-23-23992
https://www.intel.com/content/www/us/en/developer/tools/oneapi/tech-articles-how-to/overview.html
https://www.intel.com/content/www/us/en/developer/articles/training/how-generative-ai-changes-how-we-develop-work-live.html

Code for the Future.
Grow beyond proprietary boundaries.

Expand your code’s reach with a single, open programming model that supports
multiple languages to deliver heterogeneous computing performance.

Rooted in open standards, oneAPI offers cross-architecture libraries, compilers and
tools that open your code to more hardware choices—for unparalleled performance.

Discover oneAPI �

https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

6The Parallel Universe

In modern data centers, we have seen a wide range of applications involving intensive memory
operations and transformations, such as memcpy(), memmove(), hashing, and compression. These
applications include, but are not limited to, database, image processing and video transport, and graph
processing. In addition, such memory operations and transformations are also common in a data center’s
infrastructure software, consuming a significant amount of CPU cycles. This is also known as the “data
center tax” because these cycles could have been used to run applications. Ideally, such operations
should be offloaded to optimized hardware engines.

Sanjay Kumar, Principal Engineer, Reese Kuper, Research Intern, Atul Kwatra, Intel
Fellow, Shibani Nataraja, Product Manager, Narayan Ranganathan, Principal Engineer,
Nikhil Rao, Research Scientist, Rajesh Sankaran, Intel Senior Fellow, Ren Wang, Research
Scientist, and Yifan Yuan, Research Scientist, Intel Corporation

Beyond Direct Memory
Access: Reducing the Data
Center Tax with Intel® Data
Streaming Accelerator
Take Advantage of On-Chip Acceleration of Data
Transformation in 4th Gen Intel® Xeon® Scalable
Processors

https://software.intel.com/articles/optimization-notice#opt-en
https://dl.acm.org/doi/10.1145/2749469.2750392
https://dl.acm.org/doi/10.1145/2749469.2750392

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

7The Parallel Universe

Intel® Data Streaming Accelerator
Intel Data Streaming Accelerator (Intel® DSA) is a high-performance data copy and transformation
accelerator integrated in the latest 4th Generation Intel® Xeon® Scalable processors. It provides not
only processing efficiency and practicality, but also versatility. Intel DSA is equipped with hardware
components to efficiently process work descriptors submitted by one or more users. Through the
support of shared virtual memory (SVM), these work descriptors can be submitted by user applications
directly to Intel DSA via memory-mapped I/O (MMIO) registers, and the target memory regions are not
required to be pinned in the operating system. Users are also allowed to directly configure the underlying
computational resources based on their needs, which is enabled by the user interfaces provided by a set
of dedicated drivers. In addition, Intel DSA provides better functionality by means of newly supported
operations (Table 1). Therefore, it is expected that more user/kernel processes can take advantage of
what Intel DSA offers.

Intel® Data Accelerator Driver (IDXD) is a kernel mode driver for device initialization and management. It
provides functionality for Intel DSA discovery, initialization, and configuration. Applications can leverage
the user-space libaccel-config API library for such control operations. For the data path, to provide
low-latency access to the Intel DSA instance for applications, IDXD exposes the MMIO portals as a char
device via mmap(). Given all these new features and improvements, we see significant performance gains
of Intel DSA over its software counterparts in multiple domains (Table 2) and on multiple operations,
especially with medium-to-large data size (Figure 1).

Table 1. Data streaming operations supported by Intel® DSA

https://software.intel.com/articles/optimization-notice#opt-en

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

8The Parallel Universe

Area Example Applications and Operations
Networking stack acceleration DPDK, software virtual switch, video transport
Storage stack acceleration SPDK, NVMe-oF, DAOS
Data center tax reduction VM boot-up/migration, memory compaction
HPC/ML acceleration Memory movement/zeroing in libfabric/MPI
Heterogeneous memory management
acceleration

Page migration for CXL/Pmem-based tiered
memory systems

Operating Intel DSA
Like other accelerators, Intel DSA employs descriptors and work queues (WQ) to interact with the CPU
software (Figure 2).

Table 2. Potential Intel® DSA usage in multiple domains

Figure 2. Descriptor processing sequence

Figure 1. Throughput improvements of data streaming operations over their software
counterparts with varying transfer sizes (batch size: 1); Memory Fill and NT-Memory Fill refer

to allocating and non-allocating writes (similar to regular store and nt-store), respectively

https://software.intel.com/articles/optimization-notice#opt-en

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

9The Parallel Universe

Data movement is the most common use-case of Intel DSA, so we will use a data-copy example to
demonstrate usage. Suppose in a key-value store application, where we have large key-value pair size,
every time we retrieve or update the value of a given key, memory copy will happen and incur lots of CPU
cycles. We would rather offload these operations to Intel DSA. Assuming the Intel DSA instance has been
enumerated and configured by tools like accel-config, the programmer first needs to allocate and fill
the descriptor data structure (Figure 3). The descriptor contains information about the desired operation,
such as operation type, source and destination address, data length, etc.

Having the descriptor ready, the next step for the programmer is to submit the descriptor to a WQ
opened and mapped in the current program. Depending on the WQ type, the software may use either the
ENQCMD or MOVDIR64B instruction for descriptor submission. Both instructions are supported in GNU
GCC (version 10 and later), and the programmer can use the x86 intrinsics to call them (Figure 4).

Figure 3. Descriptor initialization

Figure 4. Descriptor submission

https://software.intel.com/articles/optimization-notice#opt-en

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

10The Parallel Universe

To check the completion of the descriptor, the programmer needs to poll the status field of the
completion record, which will be updated by Intel DSA. The most common way of doing this is spin-
polling (Figure 5). New instructions, like PAUSE and UMONITOR/UMWAIT, can be applied to further
reduce the processor’s power consumption, as the core can enter a different power state with
such instructions. (See the Intel® 64 and IA-32 Architectures Software Developer Manuals for more
information.)

Take Advantage of Intel DSA with Software Libraries
The Intel® Data Mover Library (Intel® DML) and Intel® DSA Transparent Offload Library (Intel® DTO)
make Intel DSA easier to use. Intel DML provides a set of high-level C/C++ APIs for data movement and
transformation, calling the underlying Intel DSA unit when available. It supports advanced capabilities (all
Intel DSA hardware operations, asynchronous offload, load balancing, etc.). Intel DML v1.0.0 is available
on GitHub. After cloning the repository and installing the required packages, it can be compiled and
installed by simple CMake commands (see the Intel DML Documentation for more installation options):

Figure 5. Checking descriptor completion

https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://github.com/intel/DTO
https://github.com/intel/DML
https://intel.github.io/DML/index.html

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

11The Parallel Universe

Figure 6 demonstrates basic usage of Intel DML. While the basic steps remain unchanged, more details
are hidden by Intel DML APIs and abstraction. Continuing the example of key-value store application,
instead of manually preparing and submitting the descriptor, the programmer can call Intel DML so that
the designated memory copy is offloaded to Intel DSA.

Intel DTO is a less-intrusive library that allows the application to leverage Intel DSA transparently
without source code modification. Users can either dynamically link the library using the ‑ldto and
-laccel-config linker options or preload the library via LD_PRELOAD without having to recompile their
application. When common system API calls like memmove(), memcpy(), memset(), or memcmp() are
used, they are intercepted and replaced by Intel DTO functions to access the corresponding synchronous
Intel DSA operations.

In addition to Intel DML and Intel DTO, which are general-purpose libraries, there are also domain-
specific software libraries that take advantage of Intel DSA. For example, in the Data Plane Development
Kit (DPDK) for high-performance kernel-bypass network programming, Intel DSA, along with DMA

Figure 6. Example of basic data movement with Intel® DML

https://software.intel.com/articles/optimization-notice#opt-en

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

12The Parallel Universe

engines from other vendors, has been abstracted and wrapped in the dmadev library. Users can call
the corresponding APIs to offload network packets copying to Intel DSA instances. Similarly, the Storage
Performance Development Kit (SPDK) has Intel DSA support in its /lib/accel library to support various
operations offloading. Intel DSA has also been enabled in HPC libraries, such as libfabric and MPI, which
are used in not only traditional scientific computing workloads, but also emerging distributed ML/AI
applications.

Make the Most Out of Intel DSA
As an on‑chip accelerator for streaming data, Intel DSA benefits from proper tuning of the programming
models for optimal performance. Based on our experiences, we summarize a number of guidelines and
recommendations for using Intel DSA. (See this technical report for more details.)

Keep a Balanced Batch Size and Transfer Size
Offloading work of a certain size to Intel DSA can be done using either one descriptor for the full memory
region or batching multiple smaller descriptors for the same aggregate size. The general trend indicates a
decrease in throughput when using larger batches for the same offloaded work. As individual descriptors
must be processed internally in Intel DSA and read the corresponding data from memory, the additional
overhead for managing the increased number of descriptors may reduce the effective throughput
achieved from these operations. If the desired data for offloading is contiguous, coalescing into a larger,
single descriptor of the equivalent size may improve both throughput and latency.

When offloading synchronously, a weak pattern emerges, showing an optimum point in throughput
between maximizing batches and maximizing transfer size. Modestly batching the work (4-8 descriptors)
yields the best results. This is due to balancing the latency from fetching sequential regions of memory
and processing batched descriptors.

Use Intel DSA Asynchronously When Possible
Offloading operations to Intel DSA in an asynchronous manner provides optimal efficiency and
performance for both the CPU core and Intel DSA hardware. This can use Intel DML for easy
implementation. When limited in asynchronous potential, transfer sizes below 4 KB should be used on
the CPU core if cache pollution is acceptable. As an on-chip accelerator, Intel DSA brings more options to
interact with the cache and (heterogeneous) memory hierarchy.

Control the Data Destination Wisely
Unlike the completion record that is always directed to the LLC, data written to the destination address
of a descriptor can be steered either to the LLC or to the main memory. Intel DSA facilitates this cache
control feature by allowing users to provide a hint (i.e., setting the cache control flag of a work descriptor)
that notes the preferred destination. If the flag is set to 0, the data is written to the memory while

https://software.intel.com/articles/optimization-notice#opt-en
https://arxiv.org/abs/2305.02480

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

13The Parallel Universe

invalidating the corresponding cache lines in the LLC, if any. If the flag is set to 1, the data is directly
written to the LLC by allocating the corresponding cache lines. The underlying principle of this technique
is identical to that of Intel® Data Direct I/O Technology (Intel® DDIO), a direct cache access (DCA) scheme
leveraging the LLC as the intermediate buffer between the processor and I/O devices. In general, DDIO
improves system performance by reducing the data access latency and reducing memory bandwidth
pressure. However, one should be careful when using this feature because it can sometimes cause
interference in the LLC.

Cache pollution negatively affects processes that share limited hardware resources. In many data
center workloads, the latency gained from antagonistic background cache evictions may undermine the
competitive service level agreements (SLAs) set for the primary applications. On the other hand, writing
data that is either critical to performance or used by the core in the near future directly to the cache will
provide an access latency and throughput advantage for the application. The programmer should wisely
choose the data destination based on the application behavior.

Intel DSA as a Good Candidate of Moving Data across a Heterogeneous
Memory System
Moving data to/from different memory mediums, such as NUMA remote memory, persistent memory,
and CXL‑based memory, is common in modern tiered memory systems. Intel DSA offers a high
degree of configuration flexibility through the available hardware resources. Taking advantage of such
configurations can yield optimal Intel DSA hardware utilization, and thus better performance.

Leverage Processing Engine-Level Parallelism
The number of processing engines used in a group can impact the maximum observed throughput.
Increasing the number of processing engines per group improves throughput. Users should be aware
of the common transfer size of offloaded tasks to these groups as smaller transfer sizes yield greater
performance scaling.

Optimize WQ Configuration
Using batching or dedicated WQs (DWQs) provides greater benefits compared to a shared WQ (SWQ).
Unless the shared WQ is used by many other threads, greater utilization and throughput can be achieved
through reconfiguring to using more DWQs. SWQs may perform worse when few threads are used,
but can outperform all configurations when using more threads than the total number of WQs, as that
offloads concurrency management to hardware. Additionally, WQs can be configured to either shared or
dedicated for providing performance isolation between WQs within a group. As Intel DSA has limited WQ
entries, assigning 32 entries for a single WQ can provide almost the maximum throughput possible.

https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issues
© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

14The Parallel Universe

Conclusion
Intel DSA, as well as other on-chip accelerators appearing in the 4th Generation Intel Xeon Scalable
processors, has the potential to reduce the data center tax and total cost of ownership. This article
provides a high-level overview of Intel DSA and its fundamental usages, as well as several guidelines to
make the most out of this accelerator. With a growing software ecosystem, we believe Intel DSA will be
adopted for many data center workloads. Intel, in active collaboration with the open-source community,
has been building and enabling this ecosystem.

Additional Resources
 • Introducing the Intel Data Streaming Accelerator (Intel DSA)

 • Intel Data Streaming Accelerator Architecture Specification [PDF]

 • Intel Data Streaming Accelerator User Guide [PDF]

 • Intel DSA Performance Micros

 • Intel Data Mover Library (Intel DML)

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator
https://cdrdv2-public.intel.com/671116/341204-intel-data-streaming-accelerator-spec.pdf
https://cdrdv2-public.intel.com/759709/353216-data-streaming-accelerator-user-guide-2.pdf
https://github.com/intel/dsa-perf-micros
https://github.com/intel/DML

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

15The Parallel Universe

oneAPI is an open specification (see oneapi.io) for accelerator programming that includes a language
(SYCL* from The Khronos Group), standardized library interfaces (for neural networks, data analytics,
and more), and a close-to-the-metal programming interface (Level Zero). oneAPI is designed to be
hardware- and vendor-independent, and has already been demonstrated on CPUs, GPUs, FPGAs, and
other accelerators from multiple vendors. oneAPI delivers a standards-based approach to programming
that allows developers to unlock high performance without sacrificing portability across hardware and
software environments.

oneAPI is made possible by a collection of multiple interoperable standards across many levels of
the software stack. Some of these standards (like Level Zero and extensions to SYCL) are part of the
oneAPI specification. Others (like SYCL and SPIR‑V) are industry standards that provide the foundations
for portable programming with oneAPI. Yet others (like OpenMP*, ISO C++, and ISO Fortran) describe

John Pennycook, Software Enabling and Optimization Architect, Intel Corporation

Cultivating Parallel
Standards: Diversity,
Alignment, and Cross-
Pollination
A Look into the Future of Standards-Based Parallel
Programming

https://software.intel.com/articles/optimization-notice#opt-en
https://www.oneapi.io/

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

16The Parallel Universe

alternative syntax for accelerator programming that can be layered on top of oneAPI.

Interoperability between all these standards is crucial, because large applications are very rarely written
by a single developer working with a single language at a single level of abstraction. It’s much more
common to use a mixture of different techniques, calling libraries written by other developers (e.g., an
application written in Fortran and OpenMP using an optimized library written in SYCL). Maintaining
interoperability requires constant effort, because it’s not uncommon for different standards to offer
their own solutions to new problems. Different standards may target different levels of abstraction, may
prefer different coding styles, and must always consider how any new functionality meshes with existing
features and established conventions. But standards can still learn from one another, aligning around
terminology and cross-pollinating features when appropriate.

Looking back at the last decade of SYCL, C++, and OpenCL* we can clearly see this process of alignment
and cross-pollination in action (Figure 1). For example, OpenCL 2.0 adopted the concepts and
terminology from the C++11 memory model, extending them with the notion of scopes and multiple
address spaces. OpenCL 2.0 features like groups and group functions were then later combined with
aspects of the C++17 parallel algorithms to produce SYCL 2020’s group algorithms library, allowing
developers to use familiar C++ syntax to access vendor-optimized operations at multiple levels of the
hardware hierarchy.

This is an ongoing process, and in our recent IWOCL submission — “Towards Alignment of Parallelism
in SYCL and ISO C++” — we proposed some new clarifications to SYCL that are designed to bridge the
gap between concepts like SYCL work-items and C++17 threads of execution. These clarifications make
it easier to reason about the behavior of C++17 parallel algorithms layered on top of SYCL and are a
necessary step towards allowing certain C++17 execution policies to work correctly on SYCL devices.

Figure 1. Parallel evolution of SYCL*, ISO C++ and OpenCL*

https://software.intel.com/articles/optimization-notice#opt-en
https://dl.acm.org/doi/10.1145/3585341.3585371
https://dl.acm.org/doi/10.1145/3585341.3585371

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

17The Parallel Universe

Looking forward, we see opportunities for SYCL to influence the future of heterogeneous programming
in C++. We believe that implementers’ experiences with SYCL can and will feed directly into the design
of new, high-level abstractions proposed for C++. But we also believe that SYCL will continue to play an
important role for developers long into the future, providing direct access to lower-level and cutting-edge
hardware features via mechanisms that are fully interoperable with relevant C++ abstractions.

What might that future look like? Although we can’t say for certain, there are a few ISO C++ proposals
that hold some clues: P2300 (“std::execution”) and P2500 (“C++ parallel algorithms and P2300”). If
these proposals are accepted — which won’t happen until 2026, at the earliest! — then it would become
possible to write code like that in Figure 2.

For those of us who can’t wait until 2026, it’s already possible to mix C++ parallel algorithms and SYCL
today using the oneAPI DPC++ Library (oneDPL). oneDPL is an open-source library that enables C++
parallel algorithms to execute on SYCL devices, providing a high-productivity solution to developing
applications that can execute anywhere SYCL can. oneDPL also serves as a vehicle to explore possible
future extensions to ISO C++—there are already efforts underway to standardize parallel range-based
algorithms based on C++20 ranges, and to explore ways to represent asynchronous parallel algorithms.
Submitting a C++ parallel algorithm to a SYCL device using oneDPL is straightforward and can be as
simple as using a SYCL-aware execution policy (Figure 3). Using experimental features of oneDPL can
unlock even higher levels of performance and productivity, by leveraging lazily evaluated views to enable
kernel fusion (Figure 4).

Figure 2. A glimpse into a future that mixes C++ parallel algorithms and SYCL* with
features proposed in P2300/P2500

Figure 3. Mixing C++ parallel algorithms and SYCL* using features available in oneDPL today

// Use SYCL to represent a specific “scheduler”
// NB: get_scheduler() doesn’t exist (yet)!
auto q = sycl::queue{sycl::gpu_selector_v};
scheduler auto sch = q.get_scheduler();

// Submit a parallel loop to the SYCL scheduler using P2300/P2500 features
std::for_each(std::execute_on(sch, std::execution::par_unseq), begin, end,
 [=](auto i) {
 ...
});

// Submit a parallel loop to the default SYCL device using oneDPL
std::for_each(oneapi::dpl::execution::dpcpp_default, begin, end,
 [=](auto i) {
 ...
});

https://software.intel.com/articles/optimization-notice#opt-en
http://wg21.link/P2300
https://wg21.link/P2500
https://www.intel.com/content/www/us/en/docs/onedpl/developer-guide/2022-1/range-based-api-algorithms.html
https://www.intel.com/content/www/us/en/docs/onedpl/developer-guide/2022-1/range-based-api-algorithms.html
https://www.intel.com/content/www/us/en/docs/onedpl/developer-guide/2022-1/asynchronous-api-algorithms.html

Sign up for future issues
© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

18The Parallel Universe

oneDPL’s current syntax may be a little different to where things end up eventually, but that’s simply the
standardization process at work. Whatever ultimately lands in a future C++ standard will be the result
of years of work, drawing on the experiences of multiple libraries and multiple hardware vendors, to
establish common requirements and best practices.

We’re often asked whether developers should write their programs in OpenMP, SYCL, ISO C++, or ISO
Fortran. The answer is simple: Yes! These are all valid approaches to heterogeneous programming,
each with unique advantages and disadvantages, and combining these approaches has never been
easier thanks to features like Fortran’s ISO_C_BINDING, OpenMP’s interop clause, and SYCL’s backend
interoperability interface (Figure 5). The strong focus on interoperability between the standards at the
heart of oneAPI enables us to embrace the ability to mix and match, using whichever combination of
tools is best for the job at hand.

Figure 4. Mixing C++ ranges and SYCL* using experimental features of oneDPL

// Submit three algorithms to the default SYCL device as three kernels
using namespace oneapi::dpl;
reverse(execution::dpcpp_default, begin(data), end(data));
transform(execution::dpcpp_default, begin(data), end(data), begin(result),
 [](auto i){ return i * i; });
auto res = find_if(execution::dpcpp_default, begin(result), end(result),
 pred);

// Submit a pipeline of range transformations to the default SYCL device,
// which will execute as a single kernel
using namespace oneapi::dpl::experimental::ranges;
auto res = find_if(execution::dpcpp_default,
 views::all(sycl::buffer{data})
 | views::reverse
 | views::transform([](auto i){return i * i;}), pred);

Figure 5. A comparison of approaches to heterogeneous programming: higher-level abstractions
deliver a high-productivity solution to writing high-performance programs; lower-level

abstractions provide direct control for expert developers

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

19The Parallel Universe

OpenAI’s ChatGPT* created a frenzy in the generative AI landscape by achieving record-breaking growth.
It attracted over one million users within its first week. While big tech companies like Google, Microsoft,
and Facebook are competing in the Large Language Model (LLM) race, small startups are also making
headway. A growing problem seems to be balancing the secrecy needed for competitive advantage with
the transparency needed for safety. Unlike some LLMs, OpenAI has not released their training set or
GPT‑4* architectural details, which is drawing criticism from some quarters.

A recent leaked Google memo highlighted concerns about Google and OpenAI lacking a competitive
advantage, or “moat,” around LLM technology. The memo emphasized how open‑source alternatives
are smaller, faster, cheaper, and more customizable. (We demonstrate this in Create Your Own Custom
Chatbot in this issue of The Parallel Universe.)

Huma Abidi, General Manager and Senior Director of AI Software Products, and
Haihao Shen, AI Software Architect, Intel Corporation

The Moat Is Trust, Or Maybe
Just Responsible AI
Minimizing the Risks of Generative AI

https://software.intel.com/articles/optimization-notice#opt-en
https://www.semianalysis.com/p/google-we-have-no-moat-and-neither

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

20The Parallel Universe

While LLMs like ChatGPT have demonstrated impressive capabilities, the emergence of generative AI
models raises concerns about potential harmful effects. While the ongoing debates over large vs. small
models and open vs. closed systems are important, we must recognize that performance and accuracy
are not the only considerations. Factors such as fairness, explainability, sustainability, privacy, etc. must
also be considered. Upholding responsible AI practices will ultimately determine the societal value of AI.
Regulations will probably be introduced to require AI applications to comply with ethical best practices.
The forthcoming European Union Artificial Intelligence Act, expected to be passed later this year, will
mark the world's inaugural set of regulations governing AI systems. This legislation aims to foster a
human-centric and ethical approach to AI by introducing guidelines pertaining to transparency and risk
management.

Generative AI models learn from vast amounts of data available on the internet, which can contain biases
present in society and may inadvertently perpetuate and amplify these biases. LLMs can be manipulated
to generate or spread misinformation, phishing emails, or social engineering attacks. Malicious actors can
intentionally train models with biased or false information, leading to the dissemination of misleading
content on a large scale. Such models can be used to create convincing deepfake video and audio
content. For example, a recent AI-generated hoax of an explosion at the Pentagon went viral. Such fake
news is emerging as a major threat to the upcoming US elections: “It’s going to be very difficult for voters
to distinguish the real from the fake. And you could just imagine how either Trump supporters or Biden
supporters could use this technology to make the opponent look bad,” said Darrell West, a senior fellow
at the Brookings Institution’s Center for Technology Innovation.

LLMs can often have “hallucinations” and generate inaccurate information, which can be particularly
problematic in industries like healthcare, where models can influence diagnostic and therapeutic
decisions and potentially harm patients. Even though AI hallucinations are a known phenomenon,
people continue using LLMs and uncritically accepting their pronouncements. In a recent example, it was
discovered that a lawyer used ChatGPT to do his research because none of the decisions or quotations
cited in his legal brief existed. They were made up by ChatGPT.

The need for responsible AI has never been greater. In an interview at the Commonwealth Club, Professor
Stuart Russel said about ChatGPT: “...in a sense, we are conducting a huge experiment on the human
race with no informed consent whatsoever.” A group of over 1,000 AI experts, including Professor Russell
and Elon Musk, has called for a pause in the deployment of LLMs. Lawmakers, industry leaders, and
researchers agree that building guardrails around AI and strict regulations to ensure safe deployment
of AI are a must. Industry leaders admit that AI technology might be an existential threat to humanity. A
statement released by the Center for AI Safety says that “mitigating the risk of extinction from AI should
be a global priority alongside other societal-scale risks such as pandemics and nuclear war.” It was signed
by some of the biggest names in AI: Geoffrey Hinton (Emeritus Professor, University of Toronto), Yoshua
Bengio (Professor, University of Montreal), Sam Altman (CEO of OpenAI), Demis Hassabis (CEO of Google
DeepMind), and Dario Amodei (CEO of Anthropic). To mitigate the risks of AI, responsible development,

https://software.intel.com/articles/optimization-notice#opt-en
https://eur-lex.europa.eu/resource.html?uri=cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/DOC_1&format=PDF
https://www.cnbc.com/video/2023/05/22/a-i-generated-image-went-viral-showing-fake-explosion-outside-pentagon.html
https://www.reuters.com/world/us/deepfaking-it-americas-2024-election-collides-with-ai-boom-2023-05-30/
https://amp.theguardian.com/commentisfree/2023/jun/03/lawyer-chatgpt-research-avianca-statement-ai-risk-openai-deepmind
https://www.businesstoday.in/technology/story/exclusive-ai-guru-prof-stuart-russell-explains-why-he-signed-a-letter-with-elon-musk-and-others-to-pause-ai-development-376936-2023-04-11
https://www.safe.ai/statement-on-ai-risk

Sign up for future issues
© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

21The Parallel Universe

careful dataset curation, ongoing research, and robust ethical guidelines are essential. It is crucial to
ensure transparency, accountability, and regular audits of LLMs to address biases, reduce misinformation,
and protect user privacy.

It is evident that companies and individuals working on AI technology need to make sure their software
is developed and deployed according to ethical AI principles. The open-source Intel® Explainable AI
Tools allow users to run post hoc model distillation and visualization to examine the predictive behavior
of both TensorFlow* and PyTorch* models. They are designed to help users detect and guard against
issues of fairness and interpretability. For example, our model card generator is an open-source Python*
module that allows users to create interactive HTML reports containing model details and quantitative
analysis that displays performance and fairness metrics for both TensorFlow and PyTorch models. These
model cards can be part of a traditional end-to-end platform for deploying ML pipelines for tabular,
image, and text data to promote transparency, fairness, and accountability.

LLMs are typically trained on large public datasets and then fine‑tuned on potentially sensitive data
(e.g., financial and healthcare). Technologies like our Open Federated Learning (OpenFL) incorporate
confidential computing so that LLMs can be safely fine‑tuned on sensitive data, which in turn improves
the generalizability of models while reducing hallucinations and bias.

AI has the potential to help in economically disadvantaged areas where there is a shortage of critical
expertise. Presently, LLMs require tremendous computing power, and are typically executed in the
cloud or expensive on-premises servers with multiple accelerators. We are focused on reducing the
computational complexity of LLMs and making LLM‑based inference more efficient so that advanced
AI techniques will be available in areas with no cloud connectivity and on lower cost edge computing
devices.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/developer/articles/reference-implementation/explainable-ai-tools.html
https://www.intel.com/content/www/us/en/developer/articles/reference-implementation/explainable-ai-tools.html
https://www.intel.com/content/www/us/en/developer/articles/reference-implementation/explainable-ai-tools.html
https://www.intel.com/content/www/us/en/newsroom/news/transition-openfl-primes-growth-confidential-ai.html
https://www.intel.com/content/www/us/en/newsroom/news/state-confidential-computing.html#gs.0k8ro7

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

22The Parallel Universe

Large language models (LLMs) have been attracting a lot of attention lately because of their extraordinary
performance on dialog agents such as ChatGPT*, GPT-4*, and Bard*. However, LLMs are limited by the
significant cost and time required to train or fine‑tune them. This is due to their large model sizes and
data sets.

In this article, we will demonstrate how to easily train and fine‑tune a custom chatbot on readily available
hardware. We use 4th Generation Intel® Xeon® Scalable processors to create our chatbot using a
systematic methodology to generate a domain‑specific dataset and an optimized fine‑tuning code base.

Haihao Shen, AI Software Architect, Xinyu Ye, AI Software Engineer, Kaokao Lv, AI
Software Engineer, Xuhui Ren, AI Software Engineer, and Huma Abidi, General Manager
and Senior Director of AI Software Products, Intel Corporation

Create Your Own Custom
Chatbot
Train Large Language Models Quickly and Easily on
Intel® Processors

https://software.intel.com/articles/optimization-notice#opt-en
https://openai.com/blog/chatgpt
https://openai.com/research/gpt-4
https://bard.google.com/

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

23The Parallel Universe

Our Approach
Stanford Alpaca is an instruction‑following language model that is fine‑tuned from Meta’s LLaMA model.
Inspired by this project, we developed an enhanced methodology to create a custom, domain‑specific
chatbot. While there are several language models that one could use (including some with better
performance), we selected Alpaca because it is an open model.

The workflow of the chatbot consists of four main steps: guided seed generation, free (non‑guided) seed
generation, sample generation, and fine‑tuning (Figure 1).

Before walking you through these steps, we’d like to introduce a prompt template that is useful in seed
task generation. The sample prompt from Alpaca for general tasks is shown in Figure 2.

Figure 1. Overview of chatbot fine-tuning

Figure 2. Prompt template for seed task generation

https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/tatsu-lab/stanford_alpaca
https://ai.facebook.com/blog/large-language-model-llama-meta-ai/

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

24The Parallel Universe

We modified the template by adding a new requirement; i.e.: “The generated task instructions should be
related to <domain_name> issues.” This helps generate seed tasks related to the specified domain. To
generate more diverse seed tasks, we use both guided and free (non-guided) seed task generation.

Guided seed task generation leverages the existing seed tasks from Alpaca. For each seed task, we
combine the content from the domain prompt template and feed it into the existing dialog agent. We
expect to generate the corresponding number of tasks (e.g., 20 defined in the prompt template in Figure
2). Such text generation is one of the typical use-cases for causal language models.

Non-guided seed task generation feeds the domain prompt template to the dialog agent directly without
specifying additional seed tasks. We refer to non‑guided seed task generation as “free.” We generate new
domain seed tasks using this approach (Figure 3).

With these seed tasks, we again leverage the existing dialog agent to generate the instruction samples. As
the domain prompt template is used, the output follows the requirements with the format “instruction,”
“input,” and “output.” We repeat the process and generate 2,000 instruction samples for fine‑tuning
(Figure 4).

You may have noticed the similarity between a domain seed task and an instruction sample. You can
think of them as being a ChatGPT prompt and the resulting output respectively with one influencing the
other.

Figure 3. Domain seed task

Figure 4. Domain instruction sample

https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/tatsu-lab/stanford_alpaca/blob/main/seed_tasks.jsonl

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

25The Parallel Universe

Training Your Custom Chatbot
We use the Low-Rank Adaptation (LoRA) approach to fine‑tune the LLM efficiently, rather than fine‑
tuning the entire LLM with billions of parameters. LoRA freezes the pretrained model weights and injects
trainable rank decomposition matrices into each layer of the transformer architecture, greatly reducing
the number of trainable parameters for downstream tasks.

Besides the parameter‑efficient fine‑tuning, we can leverage hardware and software acceleration to
speed up the fine‑tuning process. An example of hardware acceleration is Intel® Advanced Matrix
Extensions (Intel® AMX-BF16) instructions, available on 4th Generation Intel Xeon Scalable processors,
that are specifically designed to accelerate AI performance. The software optimizations included
in PyTorch*, Intel® Extension for PyTorch* and Hugging Face* transformers also help accelerate
performance compared to unoptimized versions of these frameworks and libraries.

We can also enable instruction sample concatenation to further improve the fine‑tuning process. The
basic idea is that several tokenized sentences are concatenated into a longer and concentrated sentence
as the training sample instead of having several training samples with different lengths. This helps
maximize the underlying hardware efficiency.

All the above optimizations are on a single compute node. You can also perform multinode fine‑tuning
with distributed data parallelism during the fine‑tuning process to harness more computing power.

Now, let’s start training a domain chatbot:

 • Check out the example code from Intel® Extension for Transformers.

 • Install the necessary software packages defined in the requirements file.

 • Download the pretrained models. You can download FLAN-T5 from Hugging Face. You can request
access to LLaMA directly from Meta, or you can use an alternative version from Hugging Face.

 • Start training using the script and commands shown in Figure 5. Please refer to the user guide for more
details.

https://software.intel.com/articles/optimization-notice#opt-en
https://arxiv.org/pdf/2106.09685.pdf
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/intrinsic-for-amx-bf16-instructions.html
https://github.com/pytorch/pytorch
https://www.intel.com/content/www/us/en/developer/tools/oneapi/optimization-for-pytorch.html
https://github.com/huggingface/transformers
https://github.com/intel/intel-extension-for-transformers/tree/main/workflows/chatbot
https://github.com/intel/intel-extension-for-transformers/blob/main/workflows/chatbot/requirements.txt
https://huggingface.co/google/flan-t5-xl
https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform
https://huggingface.co/decapoda-research/llama-7b-hf
https://github.com/intel/intel-extension-for-transformers/blob/main/workflows/chatbot

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

26The Parallel Universe

Results
We tested the fine‑tuning on two popular LLMs (LLaMA‑7B and FLAN‑T5 XL) using 52,000 general
instruction samples from Alpaca and our generated 2,000 domain instruction samples. Using the
previously described software optimization techniques, we observe up to 25x speedup on 4th
Generation Intel Xeon Scalable processors (Figure 6).

Figure 5. Multinode fine-tuning script

Figure 6. Chatbot fine-tuning speedup

https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issues
© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

27The Parallel Universe

We measured the knowledge acquired by the model during pretraining using the new Massive Multitask
Language Understanding (MMLU) benchmark, which evaluates models exclusively in zero-shot and few-
shot settings. You can see from Table 1 that our chatbot shows better results on average and for most
of the domain subtasks. Our MMLU results are comparable with GPT‑3* (175B), yet 25x more efficient in
parameter size. We encourage you to also try this build using other open language models while taking
advantage of Intel® hardware acceleration and software optimizations.

In addition to the MMLU benchmark, we also did qualitative conversation evaluation, e.g.:

Input prompt: Where to find the product information about Intel microchip?

Response from Alpaca: You can find product information about Intel microchips on their website,
Intel.com. There you will find information about their processors, graphics cards, motherboards, and
other products. You can also find product specifications, tutorials, and other resources.

Response from our chatbot: You can find the product information about Intel microchips on their
website, https://www.intel.com/content/www/us/en/support/processors/top‑questions.html.

Summary
We released the source code and domain‑specific dataset in Intel Extension for Transformers. We
encourage you to create your own chatbot on Intel® CPUs and explore other Intel® AI tools and
optimizations as part of your AI workflows.

Our next step is to enable quantization and compression techniques to accelerate chatbot inference
on Intel platforms. Please add a star to Intel Extension for Transformers if you would like to receive
notifications about our latest optimizations, and feel free to contact us if you have any questions.

Table 1. MMLU benchmarks

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://paperswithcode.com/dataset/mmlu
https://paperswithcode.com/dataset/mmlu
https://www.intel.com/content/www/us/en/support/processors/top-questions.html
https://github.com/intel/intel-extension-for-transformers/blob/main/workflows/chatbot
https://github.com/intel/intel-extension-for-transformers/blob/main/workflows/chatbot/intel_domain.json
https://github.com/intel/intel-extension-for-transformers
https://www.intel.com/content/www/us/en/developer/topic-technology/artificial-intelligence/overview.html
https://github.com/intel/intel-extension-for-transformers

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

28The Parallel Universe

Open-sourcing large language models (LLMs) goes a long way toward making AI technology accessible
everywhere. It’s possible but unlikely that the next AI research breakthrough will come from someone
without access to massively distributed clusters of accelerators. However, the story is quite different
in AI application development, where there is more flexibility when selecting product development
infrastructure. This makes the intersection of the availability and scalability of CPUs and the truly open-
source license behind the Falcon LLM a major enabling factor for AI.

This article explores the exciting challenge of fine‑tuning the state‑of‑the‑art Falcon 7‑billion language
model (Falcon-7B) on Intel® Xeon® processors using the Hugging Face* Supervised Fine-tuning Trainer
(SFTTrainer), Intel® Extension for PyTorch* (IPEX) with Intel® Advanced Matrix Extensions (Intel® AMX), and
Auto Mixed Precision (AMP) with Bfloat16.

Eduardo Alvarez, Senior AI Solutions Engineer, Intel Corporation

Fine-Tuning the Falcon
7-Billion Parameter Model
with Hugging Face and
oneAPI
Optimizing Large Language Models on Intel® Xeon®
Processors with Intel® Advanced Matrix Extensions
(Intel® AMX)

https://software.intel.com/articles/optimization-notice#opt-en
https://falconllm.tii.ae/
https://www.intel.com/content/www/us/en/developer/partner/hugging-face.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/optimization-for-pytorch.html

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

29The Parallel Universe

Environment Setup
Set up the environment as follows:

Install miniconda.

1. Create a conda environment: conda create -n falconft python==3.8.10

2. Install dependencies: pip install -r requirements.txt. The requirements.txt file lists the
following dependencies:

torch==2.0.1
transformers==4.30.1
bitsandbytes==0.39.0
peft==0.3.0
accelerate==0.20.3
datasets==2.12.0
trl==0.4.4
einops==0.6.1
scipy==1.10.1
intel_extension_for_pytorch==2.0.100

3. Activate the conda environment: conda activate falconft

Fine-Tuning for Causal Language Modeling
Causal language modeling involves predicting the next word in a sequence based on the preceding
context, enabling tasks like text generation. Fine‑tuning a model like Falcon‑7B for a specific task involves
adapting the pretrained model by providing task‑specific labeled data. The model is further trained
on this data, adjusting its parameters to optimize performance on the new task. Through this process,
Falcon‑7B gradually learns the patterns and intricacies of the specific causal task, enabling it to generate
coherent and contextually appropriate text for that particular use case.

We will use a subset of the Open Assistant dataset that only contains the highest-rated paths in the
conversation tree (a total of 9,846 samples). Check out this article to learn more about fine‑tuning and
transfer learning.

While GPUs have been the default choice for deep learning tasks, fine‑tuning Falcon‑7B on CPUs
provides several advantages:

 • Availability: CPUs are ubiquitous and easily accessible, making them an attractive option for researchers
and practitioners who may not have access to expensive GPU clusters.

 • Cost: CPUs are generally more cost‑effective than GPUs for large‑scale deployments.

 • Compatibility: CPUs are compatible with a wide range of hardware and infrastructure, ensuring smooth
integration into existing systems.

https://software.intel.com/articles/optimization-notice#opt-en
https://docs.conda.io/en/latest/miniconda.html
https://medium.com/@eduand-alvarez/is-transfer-learning-magic-or-pure-genius-d27b6e6d7162

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

30The Parallel Universe

Fine‑tuning Falcon‑7B becomes even more efficient and effective by combining SFTTrainer with IPEX
with Intel AMX and AMP with Bfloat16. SFTTrainer simplifies the fine‑tuning process by providing a
higher-level abstraction for complex tasks. IPEX and AMP take advantage of the latest hardware features
in Intel Xeon processors. This extension introduces support for the newest optimizations and devices
before they are upstreamed into open-source PyTorch*. It also supports AMP training and inference,
converting parameters and operations to Bfloat16 to further accelerate Intel AMX while preserving full
32-bit accuracy where necessary.

Falcon-7B is a 7-billion parameter decoder-only model developed by the Technology Innovation Institute
(TII) in Abu Dhabi. It outperforms several models, like LLaMA, StableLM, RedPajama, and MPT, utilizing the
FlashAttention method to achieve faster inference, resulting in significant speed improvements across
different tasks (Figure 1).

Running the script below will load the “tiiuae/falcon‑7b” model from Hugging Face, tokenize, set training
parameters, and use SFTTrainer for fine‑tuning. The time it takes to fine‑tune the model will vary
depending on the compute and hyperparameters we set. Before running the script, it’s essential to set
the following environment variable to ensure that we are selecting the Intel AMX ISA:
export ONEDNN_MAX_CPU_ISA=”AVX512_CORE_AMX”

falcon-tune.py
import time
import argparse

from datasets import load_dataset
from trl import SFTTrainer
from transformers import (
 AutoModelForCausalLM,
 AutoTokenizer,
 TrainingArguments)

def main(FLAGS):

Figure 1. Hugging Face LLM leaderboard on June 6, 2023 (Image Source)

https://software.intel.com/articles/optimization-notice#opt-en
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

31The Parallel Universe

 dataset = load_dataset(“timdettmers/openassistant-guanaco”, split=”train”)

 model_name = “tiiuae/falcon-7b”
 tokenizer = AutoTokenizer.from_pretrained(model_name)
 tokenizer.pad_token = tokenizer.eos_token
 model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)

 print(‘setting training arguments’)

 training_arguments = TrainingArguments(
 output_dir=”./results”,
 bf16=FLAGS.bf16, #change for CPU
 use_ipex=FLAGS.use_ipex, #change for CPU IPEX
 no_cuda=True,
 fp16_full_eval=False,
)

 print(‘Creating SFTTrainer’)

 trainer = SFTTrainer(
 model=model,
 train_dataset=dataset,
 dataset_text_field=”text”,
 max_seq_length=FLAGS.max_seq_length,
 tokenizer=tokenizer,
 args=training_arguments,
 packing=True,
)

 print(‘Starting Training’)
 start = time.time()

 trainer.train()

 total = time.time() - start
 print(f’Time to tune {total}’)

if __name__ == “__main__”:
 parser = argparse.ArgumentParser()

 parser.add_argument(‘-bf16’,
 ‘--bf16’,
 type=bool,
 default=True,
 help=”activate mix precision training with bf16”)
 parser.add_argument(‘-ipex’,
 ‘--use_ipex’,
 type=bool,
 default=True,
 help=”used to control the maximum length of the generated text in
text generation tasks”)
 parser.add_argument(‘-msq’,
 ‘--max_seq_length’,
 type=int,
 default=512,
 help=”specifies the number of highest probability tokens to consider

https://software.intel.com/articles/optimization-notice#opt-en

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

32The Parallel Universe

at each step”)

 FLAGS = parser.parse_args()
 main(FLAGS)

We can execute our script with the following command:

python falcon-tune.py --bf16 True --use_ipex True --max_seq_length 512

During training, we will see a progress bar indicating the estimated time to complete the process (Figure
2).

Once training is complete, we should find a “results” directory with various checkpoint folders. The
checkpoint folder with the highest number (checkpoint‑3000) will contain all of our configurations,
PyTorch model files, etc. (Figure 3). We will need the files in this folder to deploy our model and process
inference requests.

Inference with Our Tuned Falcon-7B Model
Now that our model has been fine‑tuned, we can test it with a sample prompt using the following script
to create a Hugging Face pipeline:

Figure 2. Training log from the fine-tuning process

Figure 3. Contents of final checkpoint folder

https://software.intel.com/articles/optimization-notice#opt-en

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

33The Parallel Universe

falcon-tuned-inference.py

from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
import transformers
import torch
import argparse
import time

def main(FLAGS):

 model = AutoModelForCausalLM.from_pretrained(FLAGS.checkpoints, trust_remote_code=True)
 tokenizer = AutoTokenizer.from_pretrained(FLAGS.checkpoints, trust_remote_code=True)
 tokenizer.pad_token = tokenizer.eos_token

 generator = transformers.pipeline(
 “text-generation”,
 model=model,
 tokenizer=tokenizer,
 torch_dtype=torch.bfloat16,
 trust_remote_code=True,
 device_map=”auto”,
)

 user_input = “start”

 while user_input != “stop”:

 user_input = input(f”Provide Input to tuned falcon: “)

 start = time.time()

 if user_input != “stop”:
 sequences = generator(
 f””” {user_input}”””,
 max_length=FLAGS.max_length,
 do_sample=False,
 top_k=FLAGS.top_k,
 num_return_sequences=1,
 eos_token_id=tokenizer.eos_token_id,)

 inference_time = time.time() - start

 for seq in sequences:
 print(f”Result: {seq[‘generated_text’]}”)

 print(f’Total Inference Time: {inference_time} seconds’)

if __name__ == “__main__”:
 parser = argparse.ArgumentParser()

 parser.add_argument(‘-c’,
 ‘--checkpoints’,
 type=str,
 default=None,
 help=”path to model checkpoint files”)
 parser.add_argument(‘-ml’,
 ‘--max_length’,
 type=int,
 default=”200”,

https://software.intel.com/articles/optimization-notice#opt-en

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

34The Parallel Universe

help=”used to control the maximum length of the generated text in
text generation tasks”)
 parser.add_argument(‘-tk’,

‘--top_k’,
type=int,
default=”10”,
help=”specifies the number of highest probability tokens to consider

at each step”)

 FLAGS = parser.parse_args()
 main(FLAGS)

To execute this script, run the following command:

python falcon-tuned-inference.py --checkpoints <PATH-TO-CHECKPOINT> --max_length 200
--top_k 10

When prompted by our script, we asked Falcon, “Can you tell me three fun facts about space?” Its
response is shown in Figure 4. Except for the partially correct fact about Saturn, it seems like the
model provided a factually accurate response and organized it in an easily interpretable format. There
are encouraging signs that our fine‑tuning has improved on the untuned model.

How does our model compare to the raw, untuned version of Falcon-7B? We tested the untuned Falcon-
7B model with the same prompt as above (Figure 5). We can see that the untuned model has difficulty
comprehending our request and formulating a coherent response. This is evidence that fine‑tuning
has improved the model’s comprehension and overall response quality. Quantifying the degree of
improvement would require running causal language modeling benchmarks, which is beyond the scope
of this article.

Figure 4. Response from tuned Falcon-7B

Figure 5. Response from untuned, raw Falcon-7B

https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issues
© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

35The Parallel Universe

Summary and Discussion
We now have a fine‑tuned version of one of the most powerful “truly open‑source” LLMs ever released!
The intersection of Hugging Face’s APIs, Intel’s accelerated AI tooling, accessibility of CPU hardware, and
Falcon’s open-source licensing make this implementation an accessible option for various enterprises
and AI application developers.

My goal was to enable this workload rather than analyze performance, so I omitted hardware
performance and causal modeling metrics. Still, I encourage developers to explore opportunities to
optimize this workflow using hyperparameter optimization, the Intel® Extension for Transformers, Intel®
Nueral Compressor, Parameter‑Efficient Fine‑tuning (PEFT), Low‑Rank Adaptions of LLMs (LoRA), and
fine‑tuning Falcon on the Habana Gaudi*‑1 and Gaudi‑2 accelerators to improve training performance.

PyTorch* Optimizations from Intel
LEARN MORESpeed Up AI from Research to Production Deployment

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/intel/intel-extension-for-transformers
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html#gs.zm5zqx
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html#gs.zm5zqx
https://www.intel.com/content/www/us/en/developer/tools/oneapi/optimization-for-pytorch.html

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
© Intel Corporation

Break Free
of Code

Boundaries
Experience the power of cross-architecture
programming in the Intel® Developer Cloud

for oneAPI.

Demo
Run our Mandelbrot demo on different architectures to

see cross-architecture performance for yourself.

Learn
Get hands-on experience with SYCL with 25 Jupyter

notebooks loaded with code samples.

Develop
Plan and test future-ready applications on the latest Intel

CPUs, GPUs, and FPGAs.

GET STARTED NOW >

https://software.intel.com/content/www/us/en/develop/tools/devcloud.html
https://software.intel.com/content/www/us/en/develop/tools/devcloud.html

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

37The Parallel Universe

If you need to TRANslate a FORmula into code, FORTRAN, is a great option, and has been for the past 66
years. We could argue that it’s the original domain‑specific language for mathematics, but we’ll save that
discussion for another time. The purpose of this article is not to extol the many virtues of Fortran, but
rather to assess its strengths and weaknesses for heterogeneous parallelism.

Standard-based programming languages give us a common dialect to express algorithms. However,
their support for specialized hardware tends to lag, as we saw in The Case for SYCL: Why ISO C++ Is
Not Enough for Heterogeneous Computing. Let’s see how well ISO Fortran supports heterogeneous
computing, perhaps adding something to the debate prompted by Los Alamos National Laboratory’s
recent report: An Evaluation of the Risks Associated with Relying on Fortran for Mission Critical Codes for
the Next 15 Years.

Henry A Gabb, Senior Principal Engineer and Editor-in-Chief of The Parallel Universe and Ron Green,
Compiler Engineering Manager, Intel Corporation

Using Fortran DO
CONCURRENT for
Accelerator Offload
Limitations of Standard Fortran for Heterogeneous
Computing

https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/developer/articles/technical/the-case-for-c-plus-plus-with-sycl.html
https://www.intel.com/content/www/us/en/developer/articles/technical/the-case-for-c-plus-plus-with-sycl.html
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-23-23992
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-23-23992

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

38The Parallel Universe

The DO CONCURRENT construct was introduced in ISO Fortran 2008 and has been enhanced in more
recent ISO standards. It informs, or asserts to, the compiler that the iterations of the DO CONCURRENT
loop are independent and can be executed in parallel. The Intel® Fortran Compiler supports DO
CONCURRENT. A DO CONCURRENT loop can be executed sequentially, in parallel, and can even use the
OpenMP* backend to offload DO CONCURRENT loops to accelerators.

We’ll use a simple image segmentation algorithm to demonstrate this capability. The algorithm detects
the edges of objects in an image (Figure 1). This high‑pass filter is the first step in many computer vision
processes because the edges contain most of the information in an image. The illustration in Figure
1 shows a binary image containing three objects, represented by groups of ones. The edge mask is a
Boolean matrix where true means the corresponding “pixel” is on the edge of an object.

Fortran provides a convenient array notation and intrinsic procedures to easily code edge detection
(Figure 2). We can implement this algorithm by applying a 9‑point binary filter to each pixel. The filter
is only applied to pixels that are part of an object because of the predicate on the DO CONCURRENT
loop. The operation on each pixel is independent, so the algorithm is highly data parallel and easily
implemented with a Fortran DO CONCURRENT loop and a few lines of code.

Figure 1. Edge detection in a simple binary image

https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/developer/tools/oneapi/fortran-compiler.html

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

39The Parallel Universe

The DO CONCURRENT construct is just another form of the DO construct. Even if this is your first time
seeing DO CONCURRENT, it should be clear to most Fortran programmers that this example loops
over the i and j indices like a familiar doubly nested DO loop. What is perhaps new with the DO
CONCURRENT construct is the optional predicate. This is a scalar mask expression of type LOGICAL.
If a predicate appears, only those iterations where the mask expression is TRUE are executed. The DO
CONCURRENT code above is functionally equivalent to the following DO and IF implementation:

The major difference is that DO CONCURRENT asserts to the compiler that there are no dependencies, so
the iterations can be executed in any order.

The Intel Fortran Compiler can parallelize and/or offload statements in a DO CONCURRENT loop using
the OpenMP backend. This is evident in the commands to compile the example code:

$ ifx img_seg_do_concurrent.F90 -o img_seg_do_conc_cpu -qopenmp

$ ifx img_seg_do_concurrent.F90 -o img_seg_do_conc_gpu -qopenmp \
> -fopenmp-targets=spir64

Figure 2. Edge detection implemented using a Fortran DO CONCURRENT loop (highlighted in
blue). The offload kernel is highlighted in green. The complete code is available at

img_seg_do_concurrent.F90.

integer, allocatable :: image(:,:)
logical, allocatable :: edge_mask(:,:)

! Allocate image and edge mask
allocate (image(n, n), source = 0, stat = allocstat, errmsg = allocmsg)
allocate (edge_mask(n, n), source = .false., stat = allocstat, errmsg = allocmsg)

! Initialize image

! Outline the objects in the binary image
do concurrent (j = 1:n, i = 1:n, image(i, j) /= 0)
 if (i == 1 .or. i == n .or. &
 j == 1 .or. j == n) then
 edge_mask(i, j) = .true.
 else
 if (any(image(i-1:i+1, j-1:j+1) == 0)) edge_mask(i, j) = .true.
 endif
enddo

 do j = 1, n
 do i = 1, n
 if (image(i, j) /= 0) then

 ! Same loop contents

 endif
 enddo
 enddo

https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/hagabb/blog/blob/main/img_seg_do_concurrent.F90

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

40The Parallel Universe

The first executable (img_seg_do_conc_cpu) will run the DO CONCURRENT loop in parallel on
all the available host processors. The second executable (img_seg_do_conc_gpu) will offload the
computation to an accelerator device. Host-device data transfer is handled implicitly by the OpenMP
runtime. Like ISO C++, ISO Fortran 2018 has no concept of disjoint memories, so there are no language
constructs to control data transfer. This is convenient for the programmer because it simplifies coding.
The runtime copies the necessary data to the device, then copies everything back to the host when the
DO CONCURRENT loop finishes executing. Here’s the debugging output from the OpenMP runtime if we
run the example program on a single 1,000 x 1,000 image with a random scattering of 10 objects:

$ OMP_TARGET_OFFLOAD=MANDATORY ZE_AFFINITY_MASK=0.0 LIBOMPTARGET_DEBUG=1 \
> ./img_seg_do_conc_gpu -n 1000 -i 1 -o 10 >& edge_detect_do_conc.out

$ grep Moving edge_detect_do_conc.out

Libomptarget --> Moving 4000000 bytes (hst:0x00007f22a4087200) -> (tgt:0x0000000002e17000)
Libomptarget --> Moving 88 bytes (hst:0x00007fffc6259a60) -> (tgt:0x00000000028d0008)
Libomptarget --> Moving 4000000 bytes (hst:0x00007f228529b240) -> (tgt:0x0000000003217000)
Libomptarget --> Moving 88 bytes (hst:0x00007fffc6259a00) -> (tgt:0x00000000028d0088)
Libomptarget --> Moving 4000000 bytes (tgt:0x0000000003217000) -> (hst:0x00007f228529b240)
Libomptarget --> Moving 4000000 bytes (tgt:0x0000000002e17000) -> (hst:0x00007f22a4087200)

We’ve highlighted the image and edge mask arrays. Each array is 1,000 x 1,000 x 4 bytes = 4,000,000
bytes, and you can see that they are both transferred from hst→tgt and tgt→hst, so 16,000,000
total bytes are transferred between host (hst) and target (tgt) device. (The unhighlighted 88-byte data
movements are the Fortran array descriptors, or dope vectors, of the arrays being mapped to the target
device. We can ignore this data movement because array descriptors are generally small.)

Though implicit host‑device data transfer is convenient, it isn’t always efficient. Notice that the image
variable isn’t modified in the body of the DO CONCURRENT loop (Figure 2). It’s only read on the device,
so it doesn’t need to be transferred back to the host. Moving data between disjoint memories takes time
and energy, so minimizing host‑device data transfer is a first‑order concern in heterogeneous parallel
computing. Unfortunately, ISO Fortran 2018 and forthcoming 2023 don’t provide language constructs to
control data movement.

The OpenMP target offload API provides constructs to explicitly control host-device data transfer (Figure
3). The OpenMP implementation of the edge detection algorithm transfers the image to the device
[map(to:image)], but only transfers the edge mask back to the host [map(from:edge_mask)]:

$ OMP_TARGET_OFFLOAD=MANDATORY ZE_AFFINITY_MASK=0.0 LIBOMPTARGET_DEBUG=1 \
> ./img_seg_omp_gpu -n 1000 -i 1 -o 10 >& edge_detect_omp.out

$ grep Moving edge_detect_omp.out

Libomptarget --> Moving 88 bytes (hst:0x00007ffd0b0f4638) -> (tgt:0x0000000003d91008)
Libomptarget --> Moving 4000000 bytes (hst:0x00007f4f1a69c200) -> (tgt:0x00000000042cd000)
Libomptarget --> Moving 88 bytes (hst:0x00007ffd0b0f4698) -> (tgt:0x0000000003d91088)
Libomptarget --> Moving 4000000 bytes (tgt:0x0000000003ecd000) -> (hst:0x00007f4f1a2c9240)

https://software.intel.com/articles/optimization-notice#opt-en
https://en.wikipedia.org/wiki/Dope_vector
https://www.openmp.org/specifications/

Sign up for future issues
© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

41The Parallel Universe

Once again, the image and edge mask arrays are highlighted. You can see that the image (4,000,000
bytes) is transferred from hst→tgt and the edge mask (4,000,000 bytes) is transferred from tgt→hst,
so only 8,000,000 total bytes are transferred. The DO CONCURRENT code (Figure 2) does twice the data
movement as the OpenMP target offload code (Figure 3).
 ! Outline the objects in the binary image
 !$omp target data map(to:image) map(from:edge_mask)
 !$omp target
 !$omp parallel do
 do j = 1, n
 do i = 1, n
 edge_mask(i, j) = .false.
 if (image(i, j) /= 0) then
 if (i == 1 .or. i == n .or. &
 j == 1 .or. j == n) then
 edge_mask(i, j) = .true.
 else
 if (any(image(i-1:i+1, j-1:j+1) == 0)) edge_mask(i, j) = .true.
 endif
 endif
 enddo
 enddo
 !$omp end target
 !$omp end target data

The simple edge detector in this example doesn’t do enough work to merit accelerator offload. We
implemented image segmentation using a simple 3x3‑point filter on binary images. A more complex
filter, real images, and/or volumetric images will be more compute‑ and/or data‑intensive, which will
affect the performance and offload characteristics. We will benchmark a more realistic edge detector (e.g.,
a Sobel filter) and real images in our next article. However, we know from experience that unnecessary
host-device data transfer limits performance. An example of this was shown previously in Solving Linear
Systems Using oneMKL and OpenMP Target Offloading.

This is a “good news, bad news” situation. The good news is that ISO Fortran code (Figure 2) can run
on an accelerator. Letting the runtime implicitly handle host‑device data transfer will be fine for many
algorithms. The bad news is that edge detection on read-only images isn’t one of them. There’s no
way to explicitly control data transfer, so unnecessary data transfer is unavoidable. This could limit
heterogeneous parallel performance. Fortunately, the OpenMP target offload API provides explicit
control when needed.

You can experiment with Fortran DO CONCURRENT and OpenMP accelerator offload on the free Intel®
Developer Cloud, which has the latest Intel® hardware and software.

Figure 3. Edge detection implemented using OpenMP* target offload (highlighted in blue).
The complete code is available at img_seg_omp_target.F90.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/developer/articles/technical/solve-linear-systems-onemkl-openmp-target-offload.html#gs.zlnjck
https://www.intel.com/content/www/us/en/developer/articles/technical/solve-linear-systems-onemkl-openmp-target-offload.html#gs.zlnjck
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://github.com/hagabb/blog/blob/main/img_seg_omp_target.F90

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

42The Parallel Universe

Quantum chromodynamics (QCD) is the theory/study of strong force interaction between subatomic
particles. Lattice QCD solves QCD problems by representing the particles and forces as a lattice
discretized on space and time domains. HotQCD is a C++ hybrid MPI/OpenMP* lattice QCD simulation
framework widely used by the high energy physics research community.

This article describes the performance tuning techniques applied to HotQCD to achieve optimal
performance on the Intel® Xeon® CPU Max Series. The key differentiator of the Intel Xeon CPU Max Series
over other Intel Xeon processors is the addition of high bandwidth memory (HBM) (Figure 1a). In simple
terms, HBM is a 3D stacked DRAM interface that delivers higher memory bandwidth performance than
DDR memory (single stack DRAM). The Intel Xeon CPU Max Series features up to 56 cores (per CPU
socket) with HBM2e in the form of four stacks of eight high DRAM dies per socket, with each DRAM die in
the stack having a capacity of 2 GB (4 x 8 x 2 = 64 GB HBM per socket).

Vamsi Sripathi, Software Enabling and Optimization Engineer, Intel Corporation

Performance Optimization
on Intel® Processors with
High Bandwidth Memory
A Deep Dive into Performance Tuning for the Intel®
Xeon® CPU Max Series

https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/xeon-max-series-product-brief.html

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

43The Parallel Universe

Performance Analysis
Intel® processors with HBM have many configuration modes: memory (Flat, Cache, HBM‑only) and NUMA
(SNC1, SNC4). The details of each mode are beyond the scope of this article, but you can find more
information in the Intel Xeon CPU Max Series Configuration and Tuning Guide. The system used for
this article was configured in HBM‑only memory mode (no DDR5) with SNC4 (Sub‑NUMA Clustering‑4)
(Figure 1b).

The performance snapshot of HotQCD [benchmarked with a lattice size of 324 (x=y=z=t=32) with one
RHS (right-hand side) vector] shows that the most time-consuming function (dslash, which consumes
90% of the total execution time) is memory bandwidth-bound (i.e., the processor was stalled ~50% of
the time waiting for memory operations) (Figure 2).

Figure 1. (a) Intel® Xeon® CPU Max Series; (b) Intel Xeon CPU Max Series in HBM-only + SNC4 mode

Figure 2. Baseline performance snapshot from the Intel® VTune™ Profiler using microarchitecture
exploration analysis

https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/content-details/769060/intel-xeon-cpu-max-series-configuration-and-tuning-guide.html?DocID=769060

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

44The Parallel Universe

The OpenMP parallel region of dslash is shown in Figure 3. At each point in the lattice, a set of four
dense matrix-vector products is performed through operator overloading. The function is fully vectorized
with Intel® AVX-512 intrinsics with no synchronization among threads. Link_std has two matrix-vector
products with each matrix and vector comprised of nine and three cache lines, making a total of 4 x 2 x
(9 + 3) = 96 cache lines read. Link_naik is like link_std except that its matrix is populated by loading
only seven cache lines, for a total of 4 x 2 x (7 + 3) = 80 cache lines read. All the memory accesses are
cache line-aligned with a negligible amount of data reuse, which clearly shows that this function is
memory bandwidth‑bound (with a FLOP:byte ratio of ~0.9) with heavy read traffic [for every 176 (96 +
80) cache lines read, only three cache lines are written to memory]. In other words, the processor needs
to continuously read data from memory to perform the floating‑point calculations.

Figure 3. HotQCD dslash code

https://software.intel.com/articles/optimization-notice#opt-en

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

45The Parallel Universe

Memory Access Patterns
Figure 4 shows the operation sequence in the link_std block (lines 1517 and 1518) over the inner
(each point in a 4-D lattice) and outer (lattice points) loops with the same color indicating a contiguous
memory region and a different color indicating a large stride in memory (relative to the temporal memory
access requests). Each matrix (nine cache lines, denoted CL) is loaded from contiguous memory with a
constant stride of 1,172 elements across the outer loop. A stride of 1,172 FP32 elements (1,172 x 32
bytes = 4,688 bytes) leads to accessing a new 4 KB page at each outer loop iteration. The successive
vectors loaded (in the inner loop) are separated by large strides as well. However, they form a contiguous
address stream over the outer loop iteration space. When compared to the matrices, the vectors have
better access pattern because there is no jumping across 4 KB pages. Finally, each matrix-vector product
is fully unrolled with 27 AVX-512/ZMM registers. The matrix needs 3 x 3 x 2 (for the real and imaginary
parts of the complex numbers) = 18 ZMM registers. The vector needs 3 x 1 x 2 = 6 ZMM registers plus
three ZMM for accumulation of results across the inner loop.

Software Prefetching
Intel processors have various hardware prefetchers (L1$, L2$) capable of detecting both streaming and
striding access patterns (see the Intel 64 and IA-32 Architectures Optimization Reference Manual for
more details), but they all prefetch within a 4 KB page boundary and do not fetch data across pages.
Because the matrices in HotQCD are accessed in strides that cross the page boundary, the effectiveness
hardware prefetching is reduced. This is further compounded by the fact that there are multiple strided
access streams in the loop body, which can further stress the hardware prefetcher. This led us to
investigate the performance impact of using explicit software prefetching to mitigate the effects of large
access strides. In other words, we aim to enhance the effectiveness of hardware prefetchers by issuing
prefetch instructions (available in the x86 ISA) to preemptively fetch the data from memory before being
consumed in corresponding computation operations (Figure 5).

Figure 4. Dslash memory access patterns

https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/content-details/671488/intel-64-and-ia-32-architectures-optimization-reference-manual.html
https://www.felixcloutier.com/x86/prefetchh.html

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

46The Parallel Universe

The effectiveness of software prefetching is mainly driven by two factors:

 • Prefetch distance: The ideal prefetch distance is determined by factors such as the size of working
set, the latency of instructions in the loop body, and the location of data (memory/cache) that is being
fetched. Prefetching too far ahead can cause the prefetched data to be evicted from caches by the
intermediate iteration working sets, whereas prefetching too near would not hide the latency of memory
hierarchy. In either case, it reduces the usefulness of software prefetching and can even degrade
performance because of the additional memory access requests generated by the prefetch instructions,
which is an additional burden on the already saturated memory pipeline queues.

 • Cache hierarchy: This controls the cache level to which the requested data is to be placed. x86 ISA has
prefetch instructions that can place data in L1, L2, and last level cache with additional control available
to minimize cache pollution at lower level for non-temporal accesses. In some applications, it would be
beneficial to have a multilevel prefetching mechanism as well, wherein a larger prefetch distance is used
to prefetch data from memory to L2 cache, and a shorter distance for prefetching from L2 to L1 cache.

There are two primary mechanisms to use software prefetching in applications: Intel® compiler flags
or prefetch intrinsic functions. We chose the latter because it gives us finer control. Figure 6 shows the
speedup from software prefetching + hardware prefetchers over the baseline performance (using only
hardware prefetchers) with different distance and cache hierarchy. We get 1.13x speedup by prefetching
data from 10 iterations ahead (site) to L2 cache.

Figure 5. Dslash with software prefetching

https://software.intel.com/articles/optimization-notice#opt-en

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

47The Parallel Universe

Memory Layout
In HotQCD, the key operation is to calculate the inverse of a large matrix using the indirect, iterative
conjugate gradient (CG) method to solve the linear system. The CG takes approximately 2,000 iterations
to converge. Each CG iteration computes the updated vector by computing four matrix-vector products
(discussed previously) followed by halo exchange among MPI ranks. Across the CG iterations, the
matrices remain unmodified with only the vectors getting updated. We can take advantage of this pattern
wherein the first CG iteration copies the matrices to a more performant non‑strided/packet format. In the
subsequent iterations, we load the matrices from the packed buffer (Figures 7 and 8).

Figure 6. Performance improvement from software prefetching

https://software.intel.com/articles/optimization-notice#opt-en

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

48The Parallel Universe

Figure 7. Dslash packed matrix layout

Figure 8. Matrix packed layout code

https://software.intel.com/articles/optimization-notice#opt-en

© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

49The Parallel Universe

By having a contiguous matrix memory layout, we avoid strided accesses across both inner and outer
loops. This is especially beneficial because the hardware prefetcher is heavily stressed by striding >4 KB
in the native matrix layout (baseline). The CG takes ~2,000 iterations, so the copy cost in the first iteration
is amortized. Because we need to copy the matrix in native layout to a packed buffer, we need to allocate
extra memory (1 GB for the tested problem size). This, however, is not a limiting factor because the total
runtime memory footprint of HotQCD is well within the HBM capacity of 64 GB per socket.

Figure 9 shows the VTune™ Profiler snapshot comparison of baseline against packed memory layout.
The packed memory layout shows lower cycles per instructions (CPIs) (0.4 vs 1.4) and fewer execution
slots stalled on memory requests (28% vs 44%).

Overall, by employing packed memory layout, the performance of HotQCD improves by 1.38x over
baseline (Figure 10). The dslash kernel gets a boost of 1.54x, but it does not fully translate to the full
benchmark gains as the packed layout causes cache pollution and slows down the subsequent vector
operations that follow dslash. The optimizations are applicable to Intel Xeon systems without HBM as
well, with observed performance gains of 1.21x over baseline (Figure 11).

Figure 9. VTune™ Profiler comparison between the baseline and packed layout

Figure 10. HotQCD relative performance speedup on the Intel® Xeon® CPU Max Series

https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issues
© Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries.*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

50The Parallel Universe

Conclusions
We conclude with the following key takeaways:

 • The Intel Xeon CPU Max Series featuring HBM delivers significant performance boosts over their DDR5
counterparts: 1.66x to 1.88x.

 • Prefetching can further boost HBM performance: 1.13x over HBM baseline.

 • It’s imperative to understand application memory access patterns to fully tune prefetch performance.
While prefetch instructions are cheap, use them with care.

 • Large memory access strides that cross the 4 KB page boundary are not ideal for HBM performance. As
demonstrated, prefer to read contiguous chunks of memory over strided accesses. This delivers optimal
HBM performance: 1.38x to 1.54x over baseline.

Figure 11. HotQCD performance on the Intel® Xeon® processor and the Intel® Xeon®
CPU Max Series

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

 Intel technologies may require enabled hardware, software or service activation. Learn more at intel.com or from the OEM or retailer.
Your costs and results may vary.
Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.
Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific
to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice. Notice Revision #20110804. https://software.intel.com/en-us/
articles/optimization-notice
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations
and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products. See backup for configuration details. For more complete information about performance and benchmark results, visit www.intel.
com/benchmarks.
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See
configuration disclosure for details. No product or component can be absolutely secure.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.
 © Intel Corporation. Intel, the Intel logo, Intel Iris, Intel Xeon, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
*Other names and brands may be claimed as the property of others.
 Printed in USA 707/IH Please Recycle.

